import constant from code_attribute import gpcode_manager, code_nature_analyse from strategy.data_analyzer import KPLLimitUpDataAnalyzer from strategy.data_downloader import DataDownloader from strategy.low_suction_strategy import LowSuctionOriginDataExportManager from strategy.strategy_params_settings import StrategyParamsSettings, StrategyParamsSettingsManager from strategy.strategy_variable import StockVariables from strategy.strategy_variable_factory import DataLoader, StrategyVariableFactory from third_data import kpl_util from third_data.third_blocks_manager import BlockMapManager from utils import tool, huaxin_util class BackTest: def __init__(self, day, script_name="低吸脚本_辨识度_v3.py", settings=StrategyParamsSettingsManager().get_settings()): self.day = day scripts = "" with open(script_name, mode='r', encoding='utf-8') as f: lines = f.readlines() scripts = "\n".join(lines) # 注释掉里面的import与变量 scripts = scripts.replace("from ", "#from ").replace("sv = ", "#sv = ").replace("settings = ", "#settings = ").replace( "target_code = ", "#target_code = ") self.settings = settings self.scripts = scripts self.RANGE_TIMES = ("09:25:00", "11:30:00") self.current_time = '09:25:00' self.stock_variables_dict = {} self.data_loader: DataLoader = None self.timeline_data = None self.current_data = None self.current_tick_data = None self.fcodes = None # 领涨代码的板块,{代码:{"板块":(代码, 领涨次数, 板块最大领涨次数)}} self.head_rise_code_blocks = {} # 已经成交的代码 self.deal_codes = set() # 板块已经成交的代码 self.deal_block_codes = {} def set_script(self, script): self.scripts = script def load_before_date_data_by_timeline(self, data_loader: DataLoader): """ 加载回测日期之前的K线数据与历史涨停数据 :return: 按时间排序的数据列表 """ day = self.day trade_days = data_loader.load_trade_days() timeline_data = [] # 加载历史数据 kline_data = data_loader.load_kline_data() valid_codes = set(kline_data.keys()) minute_data = {} # data_loader.load_minute_data() limit_up_record_data = data_loader.load_limit_up_data() next_trade_day = data_loader.load_next_trade_day() if not trade_days: raise Exception("交易日历获取失败") if not kline_data: raise Exception("历史日K获取失败") if not kline_data: raise Exception("历史涨停获取失败") # 统计120个交易日内代码涨停原因对应的涨停次数排名前3的板块 min_day = data_loader.trade_days[120 - 1] block_code_dates = {} for d in limit_up_record_data: # 只统计封板 if d[3] != 0: continue if d[1] < min_day: continue code, date, block = d[0], d[1], d[2] if block not in block_code_dates: block_code_dates[block] = {} if code not in block_code_dates[block]: block_code_dates[block][code] = set() block_code_dates[block][code].add(date) # 统计的代码的涨停原因 code_blocks = {} for b in block_code_dates: if b in constant.KPL_INVALID_BLOCKS: continue # if b == '跨境电商': # print("") code_limit_up_count_list = [(x, len(block_code_dates[b][x])) for x in block_code_dates[b]] code_limit_up_count_list.sort(key=lambda e: e[1], reverse=True) end_index = 3 # code_limit_up_count_list = code_limit_up_count_list[:3] for i in range(end_index, len(code_limit_up_count_list)): if code_limit_up_count_list[end_index - 1][1] == code_limit_up_count_list[i][1]: end_index = i + 1 code_limit_up_count_list = code_limit_up_count_list[:end_index] for x in code_limit_up_count_list: if x[1] < 3: continue if x[0] not in code_blocks: code_blocks[x[0]] = set() code_blocks[x[0]].add(b) return { 'date': day, 'kline_data': kline_data, 'valid_codes': valid_codes, 'minute_data': minute_data, 'limit_up_record_data': limit_up_record_data, 'limit_up_record_data_list': limit_up_record_data, "trade_days": trade_days, "next_trade_day": next_trade_day, "code_blocks": code_blocks } def load_current_date_data_by_timeline(self): """ 加载回测日期当天的数据,将这些数据根据秒切片 :param day: 日期,格式为"YYYY-MM-DD :return: 按时间排序的数据列表 """ if self.day >= '2025-05-26': IS_BY_BIG_ORDER = True else: IS_BY_BIG_ORDER = False day = self.day fdata = {} __LowSuctionOriginDataExportManager = LowSuctionOriginDataExportManager(day) all_limit_up_list = __LowSuctionOriginDataExportManager.export_limit_up_list() fdata["limit_up_list"] = {d[0][:8]: d[1] for d in all_limit_up_list} big_order_deals = __LowSuctionOriginDataExportManager.export_big_order_deal(BIG_ORDER_MONEY_THRESHOLD) if not big_order_deals or IS_BY_BIG_ORDER: big_order_deals = __LowSuctionOriginDataExportManager.export_big_order_deal_by(BIG_ORDER_MONEY_THRESHOLD) # 转换格式为:{时间: [("代码", (买单号, 量, 金额, 时间, 最终成交价))] big_order_deals_dict = {} for code in big_order_deals: for order in big_order_deals[code]: time_str = huaxin_util.convert_time(order[3]) d = (code, order) if time_str not in big_order_deals_dict: big_order_deals_dict[time_str] = [] big_order_deals_dict[time_str].append(d) for k in big_order_deals_dict: datas = big_order_deals_dict[k] datas.sort(key=lambda x: huaxin_util.convert_time(x[1][3], True)) fdata["big_order"] = big_order_deals_dict big_sell_order_deals = __LowSuctionOriginDataExportManager.export_big_sell_order_deal(BIG_ORDER_MONEY_THRESHOLD) if not big_sell_order_deals or IS_BY_BIG_ORDER: big_sell_order_deals = __LowSuctionOriginDataExportManager.export_big_sell_order_deal_by( BIG_ORDER_MONEY_THRESHOLD) big_sell_order_deals_dict = {} for code in big_sell_order_deals: for order in big_sell_order_deals[code]: time_str = huaxin_util.convert_time(order[3]) d = (code, order) if time_str not in big_sell_order_deals_dict: big_sell_order_deals_dict[time_str] = [] big_sell_order_deals_dict[time_str].append(d) for k in big_sell_order_deals_dict: datas = big_sell_order_deals_dict[k] datas.sort(key=lambda x: huaxin_util.convert_time(x[1][3], True)) fdata["big_sell_order"] = big_sell_order_deals_dict # 加载自由流通量 zylt_volume_dict = __LowSuctionOriginDataExportManager.export_zylt_volume() fdata["zylt_volume"] = zylt_volume_dict # 加载板块代码 code_plates_dict = __LowSuctionOriginDataExportManager.export_code_plates() code_plates_dict_for_refer = self.data_loader.load_code_plates_for_refer() plate_codes = self.data_loader.load_target_plate_and_codes() code_plates_dict_for_buy = {} for p in plate_codes: for code in plate_codes.get(p): if code not in code_plates_dict_for_buy: code_plates_dict_for_buy[code] = set() code_plates_dict_for_buy[code].add(p) fdata["code_plates_for_buy"] = code_plates_dict_for_buy fdata["code_plates_for_refer"] = code_plates_dict_for_refer fdata["code_plates"] = code_plates_dict # 加载板块流入(流入为正) block_in_datas = __LowSuctionOriginDataExportManager.export_block_in_datas() fdata["block_in"] = {d[0][:8]: d[1] for d in block_in_datas} special_codes = __LowSuctionOriginDataExportManager.export_special_codes() temp_code_plates = {} for plate in special_codes: for code in special_codes[plate]: if code not in temp_code_plates: temp_code_plates[code] = set() temp_code_plates[code].add(plate) for code in temp_code_plates: code_plates_dict[code] = temp_code_plates[code] # 获取所有涨停原因下面的领涨个股信息,得到的信息格式:{"代码":{板块名称}} refer_plates_of_codes = self.data_loader.load_all_refer_plates_of_codes() fdata["limit_up_plate_names_of_refer_code"] = refer_plates_of_codes fdata["all_buy_plates_of_codes"] = self.data_loader.load_all_buy_plates_of_codes() # print("*****", plate_names_of_code.get("600774")) if not fdata["zylt_volume"]: raise Exception("无自由流通数据") if not fdata["code_plates"]: raise Exception("无板块数据") if not fdata["big_order"]: raise Exception("无大单数据") if not fdata["limit_up_list"]: raise Exception("无涨停数据") if not fdata["limit_up_plate_names_of_refer_code"]: raise Exception("无涨停领涨原因数据") return fdata def load_current_tick_datas(self, data_loader: DataLoader): """ 加载Tick数据 @param data_loader: @return: Tick数据 """ code_tick_datas = data_loader.load_tick_data(target_codes=self.fcodes) # 根据时间集成 fdata = {} for code in code_tick_datas: for tick in code_tick_datas[code]: __time_str = tick["created_at"][-8:] if __time_str not in fdata: fdata[__time_str] = [] fdata[__time_str].append(tick) if not fdata: raise Exception("无分时K线数据") return fdata def __run_backtest(self, code, stock_variables: StockVariables): """ 执行回测 @param stock_variables: @return: 是否可以买 """ global_dict = { "sv": stock_variables, "target_code": code, "settings": self.settings } exec(self.scripts, global_dict) return global_dict["compute_result"] def __filter_codes(self, current_data, timeline_data): code_plates = current_data["code_plates"] start_time, end_time = self.RANGE_TIMES[0], self.RANGE_TIMES[1] fplates = set() for i in range(60 * 60 * 5): time_str = tool.trade_time_add_second(start_time, i) if time_str > end_time: break self.current_time = time_str # 统计当前涨停数据 current_limit_up_list = current_data["limit_up_list"].get(time_str) if current_limit_up_list: # 统计板块涨停 plate_codes_info = {} for x in current_limit_up_list: plates = code_plates.get(x[0]) if plates: for p in plates: if p not in plate_codes_info: plate_codes_info[p] = [] plate_codes_info[p].append((x[0], x[2])) # print(time_str, "汽车零部件", plate_codes_info.get("汽车零部件")) # 有效的板块 valid_plates = set([p for p in plate_codes_info if len(plate_codes_info[p]) >= 2]) fplates |= valid_plates codes = set([code for code in code_plates if code_plates[code] & fplates]) fcodes = set() for c in codes: if c not in timeline_data["kline_data"]: continue # 自由流通市值30-300亿 pre_close = timeline_data["kline_data"].get(c)[0]["close"] if 30e8 <= current_data["zylt_volume"].get(c) * pre_close <= 300e8: fcodes.add(c) return fcodes def __get_target_codes_v4(self): valid_codes = self.timeline_data["valid_codes"] return set(self.current_data["code_plates_for_buy"].keys()) & valid_codes def init_stock_variables(self, code_, timeline_data, current_data): """ 初始化变量 @param code_: @return: """ if code_ in self.stock_variables_dict: return if code_ == '002907': print("") stock_variables = StrategyVariableFactory.create_from_history_data( timeline_data["kline_data"].get(code_), timeline_data["minute_data"].get(code_), timeline_data["limit_up_record_data"].get(code_), timeline_data["trade_days"]) # 加载今日涨停价 pre_close = timeline_data["kline_data"].get(code_)[0]["close"] stock_variables.今日涨停价 = round(float(gpcode_manager.get_limit_up_price_by_preprice(code_, pre_close)), 2) stock_variables.自由流通市值 = current_data["zylt_volume"].get(code_) * pre_close # 获取代码板块 stock_variables.代码板块 = current_data["code_plates_for_buy"].get(code_) is_price_too_high = code_nature_analyse.is_price_too_high_in_days(code_, timeline_data["kline_data"].get(code_), stock_variables.今日涨停价) # if is_price_too_high[0]: # print("六个交易日涨幅过高", code_) stock_variables.六个交易日涨幅过高 = is_price_too_high[0] stock_variables.新代码板块 = timeline_data["code_blocks"].get(code_) stock_variables.辨识度代码 = self.fcodes stock_variables.领涨板块信息 = self.head_rise_code_blocks.get(code_) if code_ in DEBUG_CODES: print(code_, stock_variables.领涨板块信息) for day in [2, 5, 10, 30, 60, 120]: days = timeline_data["trade_days"][:day] stock_variables.__setattr__(f"日出现的板块_{day}", KPLLimitUpDataAnalyzer.get_limit_up_reasons( timeline_data["limit_up_record_data_list"], min_day=days[-1], max_day=days[0])) stock_variables.连续老题材 = KPLLimitUpDataAnalyzer.get_continuous_limit_up_reasons( timeline_data["limit_up_record_data_list"], self.data_loader.trade_days[:2]) self.stock_variables_dict[code_] = stock_variables def load_data(self): """ 加载数据 @return:历史数据, 今日数据, tick数据 """ # 提前下载数据 __DataLoader = DataLoader(self.day) plates = __DataLoader.get_limit_up_reasons_with_plate_code() for p in plates: __DataLoader.load_plate_codes(p[0], p[1]) if not self.data_loader: self.data_loader = DataLoader(self.day) if not self.current_data: self.current_data = self.load_current_date_data_by_timeline() # 按时间轴加载数据 if not self.timeline_data: self.timeline_data = self.load_before_date_data_by_timeline(self.data_loader) # TODO 输出目标代码 if not self.fcodes: # self.fcodes, self.head_rise_code_blocks = self.__get_target_codes_v3() # __filter_codes(current_data, timeline_data) self.fcodes, self.head_rise_code_blocks = self.__get_target_codes_v4(), {} print(len(self.fcodes), self.fcodes) if not self.current_tick_data: try: self.current_tick_data = self.load_current_tick_datas(self.data_loader) except: pass __DataDownloader = DataDownloader(self.day, self.data_loader.trade_days) __DataDownloader.download_tick_data(self.fcodes) def __statistic_big_order_info(self, stock_variables: StockVariables): """ 统计大单信息 @param stock_variables: @return: """ infos = [] thresholds = [50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 10000] for i in range(len(thresholds)): if i >= len(thresholds) - 1: break start, end = thresholds[i], thresholds[i + 1] info = [f"{start}w-{end}w", 0, None, None] # 统计买单 total_buy_count = 0 total_buy_volume = 0 total_buy_money = 0 if stock_variables.今日大单数据: order_ids = set() for d in reversed(stock_variables.今日大单数据): if d[0] in order_ids: continue order_ids.add(d[0]) if start * 10000 <= d[2] < end * 10000: total_buy_count += 1 total_buy_money += d[2] total_buy_volume += d[1] total_sell_count = 0 total_sell_money = 0 total_sell_volume = 0 if stock_variables.今日卖大单数据: order_ids = set() for d in reversed(stock_variables.今日卖大单数据): if d[0] in order_ids: continue order_ids.add(d[0]) if start * 10000 <= d[2] < end * 10000: total_sell_count += 1 total_sell_money += d[2] total_sell_volume += d[1] info[1] = f"{round((total_buy_volume - total_sell_volume) * 100 / stock_variables.今日成交量, 2)}%" info[2] = (total_buy_count, total_buy_money, total_buy_volume) info[3] = (total_sell_count, total_sell_money, total_sell_volume) if info[2][0] > 0 or info[3][0] > 0: infos.append(info) return ";".join([f"{x[0]}==净额:{x[1]},买单:{x[2]},卖单:{x[3]}" for x in infos]) def run(self): self.load_data() # print(self.fcodes) limit_up_record_data_dict = {} for limit_up_item in self.timeline_data["limit_up_record_data"]: if limit_up_item[0] not in limit_up_record_data_dict: limit_up_record_data_dict[limit_up_item[0]] = [] limit_up_record_data_dict[limit_up_item[0]].append(limit_up_item) self.timeline_data["limit_up_record_data"] = limit_up_record_data_dict next_trade_day = self.timeline_data["next_trade_day"] start_time, end_time = "09:25:00", "12:00:00" # 分钟K线 minute_bars_dict = {} code_plates = self.current_data["code_plates"] code_plates_for_refer = self.current_data["code_plates_for_refer"] # 板块涨停代码信息 kpl_plate_limit_up_codes_info = None plate_limit_up_codes_info = None kpl_head_plate_limit_up_codes_info = None latest_current_limit_up_list = None latest_block_in_datas = None # 根据板块获取目标票 target_plate_codes_infos = {} for code in self.head_rise_code_blocks: for p in self.head_rise_code_blocks[code]: if p not in target_plate_codes_infos: target_plate_codes_infos[p] = [] target_plate_codes_infos[p].append(self.head_rise_code_blocks[code][p]) for p in target_plate_codes_infos: target_plate_codes_infos[p].sort(key=lambda x: x[1], reverse=True) all_new_plates = set() for i in range(60 * 60 * 5): time_str = tool.trade_time_add_second(start_time, i) # print(f"[{tool.get_now_time_str()}]", time_str) if time_str > end_time: break ticks = self.current_tick_data.get(time_str) if self.current_tick_data else None # ===============统计当前涨停数据 origin_current_limit_up_list = self.current_data["limit_up_list"].get(time_str, []) current_limit_up_list = [x for x in origin_current_limit_up_list if kpl_util.get_high_level_count(x[4]) < 3] if current_limit_up_list: latest_current_limit_up_list = current_limit_up_list if current_limit_up_list: plate_codes_info = {} # 统计板块涨停 for x in current_limit_up_list: # 按代码的板块统计涨停板块中的代码数量 # 涨停过1分钟才算有效涨停 if tool.trade_time_sub(time_str, tool.timestamp_format(x[2], "%H:%M:%S")) < 60: continue plates = code_plates.get(x[0]) if plates: for p in plates: if p not in plate_codes_info: plate_codes_info[p] = [] plate_codes_info[p].append((x[0], x[2])) plate_limit_up_codes_info = plate_codes_info plate_codes_info = {} for x in current_limit_up_list: # 按开盘啦涨停原因统计 p = x[5] if p in constant.KPL_INVALID_BLOCKS: continue if p not in plate_codes_info: plate_codes_info[p] = [] # 如果领涨代码里面没有当前票就不算这个板块的涨停原因 # 获取领涨数据 # head_plate_codes_info = self.data_loader.load_plate_codes(x[9], p) # if head_plate_codes_info: # plate_codes = set([x[0] for x in head_plate_codes_info]) # else: # plate_codes = set() # if x[0] not in plate_codes: # continue plate_codes_info[p].append((x[0], x[2], x[4])) kpl_plate_limit_up_codes_info = plate_codes_info # {"代码":[(板块代码, 板块名称)]} limit_up_plate_names_of_refer_code = self.current_data["limit_up_plate_names_of_refer_code"] plate_codes_info = {} for x in current_limit_up_list: # 按开盘啦涨停原因统计 code = x[0] # if code not in limit_up_plate_names_of_refer_code: # continue # 如果记录涨停时间过去20分钟就采用涨停队列的涨停原因 if tool.trade_time_sub(time_str, tool.timestamp_format(x[2], "%H:%M:%S")) < 60 * 20 or True: plates_infos = limit_up_plate_names_of_refer_code.get(code) plates = set([d[1] for d in plates_infos if d[1] == x[5]]) if plates_infos else set() else: plates = {x[5]} new_plates = set() for p in plates: if p in constant.KPL_INVALID_BLOCKS: continue new_plates.add(p) for p in new_plates: if p not in plate_codes_info: plate_codes_info[p] = [] plate_codes_info[p].append((x[0], x[2])) kpl_head_plate_limit_up_codes_info = plate_codes_info # ==================注入板块流入 block_in_datas = self.current_data["block_in"].get(time_str) if block_in_datas: blocks = [x[0] for x in block_in_datas if x[1] > 0] block_in_datas = blocks[:20] latest_block_in_datas = block_in_datas # ================当前时刻大单 current_big_orders = self.current_data["big_order"].get(time_str) if current_big_orders: for big_order in current_big_orders: # 格式 ("代码", (买单号, 量, 金额, 时间, 最终成交价)) self.init_stock_variables(big_order[0], self.timeline_data, self.current_data) stock_variables: StockVariables = self.stock_variables_dict.get(big_order[0]) if stock_variables.今日大单数据 is None: stock_variables.今日大单数据 = [] stock_variables.今日大单数据.append(big_order[1]) # 统计大单均价 order_ids = set() total_money = 0 total_volume = 0 for order in reversed(stock_variables.今日大单数据): if order[0] in order_ids: continue order_ids.add(order[0]) total_money += order[2] total_volume += order[1] if total_volume > 0: stock_variables.今日大单均价 = round(total_money / total_volume, 2) else: stock_variables.今日大单均价 = 0 current_big_sell_orders = self.current_data["big_sell_order"].get(time_str) if current_big_sell_orders: for big_order in current_big_sell_orders: # 格式 ("代码", (买单号, 量, 金额, 时间, 最终成交价)) self.init_stock_variables(big_order[0], self.timeline_data, self.current_data) stock_variables: StockVariables = self.stock_variables_dict.get(big_order[0]) if stock_variables.今日卖大单数据 is None: stock_variables.今日卖大单数据 = [] stock_variables.今日卖大单数据.append(big_order[1]) # 开盘啦最正涨停原因 most_real_kpl_plate_limit_up_codes_info = {} # 获取这个板块的目标票 if kpl_plate_limit_up_codes_info: current_limit_up_dict = {x[0]: x for x in latest_current_limit_up_list} codes = set() for plate in kpl_plate_limit_up_codes_info: kpl_plate_codes = kpl_plate_limit_up_codes_info.get(plate) codes |= set([x[0] for x in kpl_plate_codes]) for code in codes: plates = code_plates.get(code) if not plates: plates = {current_limit_up_dict.get(code)[5]} plates -= constant.KPL_INVALID_BLOCKS if plates: for p in plates: if p not in most_real_kpl_plate_limit_up_codes_info: most_real_kpl_plate_limit_up_codes_info[p] = [] most_real_kpl_plate_limit_up_codes_info[p].append(code) # ---------测试-------- # test_plate = "化工" # if len(most_real_kpl_plate_limit_up_codes_info.get(test_plate, [])) >= 3: # print("测试开始=========") # code_plates_for_buy = self.current_data["code_plates_for_buy"] # plate_codes = [c for c in code_plates_for_buy if test_plate in code_plates_for_buy[c]] # print(f"{test_plate}满足", time_str, plate_codes) # for c in plate_codes: # sv: StockVariables = self.stock_variables_dict.get(c) # if sv and sv.当前价 > sv.昨日收盘价: # print(c) # print("测试完毕=========") if ticks: for tick in ticks: code = tick["symbol"][-6:] if code not in self.fcodes: continue if DEBUG_CODES and code not in DEBUG_CODES: continue if code not in self.stock_variables_dict: # 加载基础数据 self.init_stock_variables(code, self.timeline_data, self.current_data) stock_variables: StockVariables = self.stock_variables_dict.get(code) if plate_limit_up_codes_info is not None: stock_variables.板块涨停 = plate_limit_up_codes_info if kpl_plate_limit_up_codes_info is not None: stock_variables.开盘啦板块涨停 = kpl_plate_limit_up_codes_info if kpl_head_plate_limit_up_codes_info is not None: stock_variables.开盘啦领涨板块涨停 = kpl_head_plate_limit_up_codes_info stock_variables.板块成交代码 = self.deal_block_codes # 板块流入数据 if latest_block_in_datas: stock_variables.资金流入板块 = latest_block_in_datas # 暂时不用分钟K线 # if code not in minute_bars_dict: # minute_bars_dict[code] = [tick] # if minute_bars_dict[code][-1]["created_at"][:-2] == tick["created_at"][:-2]: # # 统计分钟K线 # minute_bars_dict[code][-1] = tick # else: # # 保存分钟K线最高价 # if not stock_variables.今日最高价: # stock_variables.今日最高价 = minute_bars_dict[code][-1]["price"] # if minute_bars_dict[code][-1]["price"] > stock_variables.今日最高价: # stock_variables.今日最高价 = minute_bars_dict[code][-1]["price"] # 保存开盘价 if tick["created_at"][-8:] < '09:30:00': stock_variables.今日开盘价 = tick["price"] # 今日开盘涨幅 stock_variables.今日开盘涨幅 = round((tick["price"] - stock_variables.昨日收盘价) / stock_variables.昨日收盘价, 4) stock_variables.今日成交量 = tick["cum_volume"] stock_variables.今日成交额 = tick["cum_amount"] stock_variables.当前价 = tick["price"] if not stock_variables.今日量够信息: if stock_variables.今日成交量 > stock_variables.昨日成交量 * 0.8: stock_variables.今日量够信息 = (time_str, stock_variables.当前价, round( (stock_variables.当前价 - stock_variables.昨日收盘价) * 100 / stock_variables.昨日收盘价, 2), self.__statistic_big_order_info(stock_variables)) if VOLUME_LOG_ENABLE: # 统计大单净额,(50w以上,净额,买单个数/买单总金额,卖单个数/卖单总金额) print("****量够", code, stock_variables.今日量够信息) # 统计今日最高价 # if stock_variables.今日最高价 and tick["price"] > stock_variables.今日最高价: # print(code, "====突破分时最高价:", tick["created_at"], tick["price"]) if not stock_variables.今日最高价信息 or tick["price"] > stock_variables.今日最高价信息[0]: stock_variables.今日最高价信息 = (tick["price"], time_str) if not stock_variables.今日最低价 or tick["price"] < stock_variables.今日最低价: stock_variables.今日最低价 = tick["price"] if most_real_kpl_plate_limit_up_codes_info: stock_variables.开盘啦最正板块涨停 = most_real_kpl_plate_limit_up_codes_info # if time_str >= '09:30:00': # if stock_variables.今日大单数据 and stock_variables.开盘啦最正板块涨停 and max( # [len(stock_variables.开盘啦最正板块涨停.get(x, [])) for x in stock_variables.代码板块]) >= 3: # compute_result = self.__run_backtest(code, stock_variables) # self.__process_test_result(code, stock_variables, next_trade_day, stock_variables.当前价, # time_str, compute_result) # if len(real_codes) >= 2 and time_str > '09:30:00': # # print(time_str, plate) # # 找这个板块领涨次数最多的票 # codes_infos = target_plate_codes_infos.get(plate) # if codes_infos: # for code_info in codes_infos: # code = code_info[0] # self.init_stock_variables(code, self.timeline_data, self.current_data) # stock_variables: StockVariables = self.stock_variables_dict.get(code) # compute_result = self.__run_backtest(code, stock_variables) # if compute_result[0] and plate not in all_new_plates: # all_new_plates.add(plate) # print(plate, time_str, code_info, real_codes) # else: # pass # 大单驱动 if current_big_orders and time_str >= '09:30:00': for big_order in current_big_orders: code = big_order[0] if code not in self.fcodes: continue self.init_stock_variables(code, self.timeline_data, self.current_data) stock_variables: StockVariables = self.stock_variables_dict.get(code) if plate_limit_up_codes_info is not None: stock_variables.板块涨停 = plate_limit_up_codes_info if kpl_plate_limit_up_codes_info is not None: stock_variables.开盘啦板块涨停 = kpl_plate_limit_up_codes_info if kpl_head_plate_limit_up_codes_info is not None: stock_variables.开盘啦领涨板块涨停 = kpl_head_plate_limit_up_codes_info if most_real_kpl_plate_limit_up_codes_info is not None: stock_variables.开盘啦最正板块涨停 = most_real_kpl_plate_limit_up_codes_info if block_in_datas: stock_variables.资金流入板块 = block_in_datas compute_result = self.__run_backtest(code, stock_variables) # print(compute_result) self.__process_test_result(code, stock_variables, next_trade_day, big_order[1][4], huaxin_util.convert_time(big_order[1][3]), compute_result) print("可买题材:", all_new_plates) def __process_test_result(self, code, stock_variables: StockVariables, next_trade_day, buy_price, time_str, compute_result): # if code == '000628': # print(time_str, code, compute_result) if not compute_result[0]: if code in DEBUG_CODES: print(time_str, code, compute_result[1]) # if compute_result[1].find("大单") >= 0 or compute_result[1].find("价格超过昨日最低价") >= 0: pass # print(code, time_str,stock_variables.代码板块, compute_result) if compute_result[0] and code not in self.deal_codes: # 最多买5个 if len(self.deal_codes) >= 100: return # if huaxin_util.convert_time(big_order[1][3]) >= "10:30:00" and len(deal_codes) > 0: # break self.deal_codes.add(code) next_k_bars = self.data_loader.load_kline_data_by_day_and_code(next_trade_day, code) current_k_bars = self.data_loader.load_kline_data_by_day_and_code(self.data_loader.now_day, code) if next_k_bars and buy_price: t_rate = round((next_k_bars[0]["open"] - buy_price) * 100 / stock_variables.昨日收盘价, 2) t_rate = f"{t_rate}%" else: # 获取当前的tick线 if self.data_loader.now_day >= next_trade_day: ticks = self.data_loader.jueJinLocalApi.get_history_tick_n(code, 1, frequency='tick', end_date=f"{next_trade_day} 09:30:03") else: ticks = None if ticks: t_rate = round((ticks[-1]["price"] - buy_price) * 100 / stock_variables.昨日收盘价, 2) t_rate = f"{t_rate}%" else: t_rate = "未知" if current_k_bars and buy_price: c_rate = round((current_k_bars[0]["close"] - buy_price) * 100 / current_k_bars[0]["pre_close"], 2) c_rate = f"{c_rate}%" else: # 拉取当日K线 if tool.get_now_date_str() == self.data_loader.now_day and buy_price: tick = self.data_loader.jueJinLocalApi.get_history_tick_n(code, 1, frequency='tick', end_date=f"{self.data_loader.now_day} {tool.get_now_time_str()}") c_rate = round((tick[0]["price"] - buy_price) * 100 / stock_variables.昨日收盘价, 2) else: bar = self.data_loader.jueJinLocalApi.get_history_tick_n(code, 1, end_date=f"{self.data_loader.now_day} 15:00:00") if bar: c_rate = round((bar[0]["close"] - buy_price) * 100 / bar[0]["pre_close"], 2) else: c_rate = "未知" print(f"{len(self.deal_codes)}==回测结果:", code, gpcode_manager.CodesNameManager().get_code_name(code), f"溢价率:{t_rate},当日盈亏:{c_rate},下单时间:{time_str},涨幅:{round((buy_price - stock_variables.昨日收盘价) * 100 / stock_variables.昨日收盘价, 2)}", compute_result[1], compute_result[2]) for b in compute_result[3]: if b not in self.deal_block_codes: self.deal_block_codes[b] = set() self.deal_block_codes[b].add(code) stock_variables.板块成交代码 = self.deal_block_codes # DEBUG_CODES = ['600727'] DEBUG_CODES = [] VOLUME_LOG_ENABLE = False # 备用大单 DEBUG_BLOCKS = [] BIG_ORDER_MONEY_THRESHOLD = 200e4 if __name__ == "__main__": back_test_dict = {} # days = ["2025-05-06", "2025-05-07", "2025-05-08", "2025-05-09", "2025-05-12", "2025-05-13", "2025-05-14", # "2025-05-15", "2025-05-16", "2025-05-19", "2025-05-20", "2025-05-21", "2025-05-22"] days = ["2025-05-12", "2025-05-13", "2025-05-14", "2025-05-15", "2025-05-16", "2025-05-19", "2025-05-20", "2025-05-21", "2025-05-22", "2025-05-23", "2025-05-26", "2025-05-27", "2025-05-28", "2025-05-29", "2025-05-30", "2025-06-03", "2025-06-04", "2025-06-05", "2025-06-06", "2025-06-09", "2025-06-10", "2025-06-11", "2025-06-12", "2025-06-13", "2025-06-16"] # days = ["2025-06-13"] days.reverse() for day in days: if day not in back_test_dict: # back_test_dict[day] = BackTest(day, "今日量是否足够.py") back_test_dict[day] = BackTest(day, "strategy_script_v6.py") print("=========================", day) # back_test_dict[day].run_volume() back_test_dict[day].run()