log_module/log_export.py
@@ -52,8 +52,32 @@
    __log_file_contents[md5] = (time.time(), contents)
    return contents
# 加载板块强度日志
def load_market_sift_plate(date=tool.get_now_date_str()):
    """
     获取精选流入的成分股
    :param date:
    :return:
    """
    path = f"{constant.get_path_prefix()}/low_suction_log/gp/kpl/market_sift_plate.{date}.log"
    fdatas = []
    if os.path.exists(path):
        with open(path, 'r', encoding="utf-8") as f:
            lines = f.readlines()
            for line in lines:
                if line:
                    time_str = __get_log_time(line)
                    try:
                        data = line.split(" - ")[1].strip()
                        data_dict = eval(data)
                        fdatas.append((time_str, data_dict))
                    except:
                        pass
    return fdatas
def load_stock_of_markets_plate(date=tool.get_now_date_str()):
# 加载个股强度日志
def load_kpl_market_stock_heat(date=tool.get_now_date_str()):
    """
     获取精选流入的成分股
    :param date:
@@ -77,5 +101,37 @@
                        pass
    return fdatas
def load_kpl_market_strong(date=tool.get_now_date_str()):
    """
     获取开盘啦历史强度
    :param date:
    :return: [("时间","分数")]
    """
    path = f"{constant.get_path_prefix()}/low_suction_log/gp/kpl/Overall_market_strength_score.{date}.log"
    fdatas = []
    if os.path.exists(path):
        with open(path, 'r', encoding="utf-8") as f:
            lines = f.readlines()
            for line in lines:
                if line:
                    time_str = __get_async_log_time(line)
                    try:
                        data = line.split(" - ")[1].strip()
                        if data.startswith("["):
                            data = data[data.find("]") + 1:].strip()
                        fdatas.append((time_str, int(data)))
                    except:
                        pass
    return fdatas
if __name__ == '__main__':
    load_stock_of_markets_plate()
    datas = load_market_sift_plate()
    fdatas = []
    for data in datas:
        # (距离09:15:00的秒数, 时间, 强度)
        if "11:30:00"<= data[0]<="13:00:00":
            continue
        fdatas.append([tool.trade_time_sub(data[0], "09:15:00"), data[0], data[1]])
    print(fdatas)