Administrator
2025-05-12 82e8474625d9af933d6ab5825b43f6a248005010
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""
策略变量工厂类
"""
import datetime
import json
import os
 
from code_attribute import global_data_loader
from db import mysql_data_delegate
from strategy.data_analyzer import KTickLineAnalyzer, KPLLimitUpDataAnalyzer, K60SLineAnalyzer
from strategy.strategy_variable import StockVariables
from third_data.history_k_data_manager import HistoryKDataManager
from third_data.history_k_data_util import JueJinLocalApi, HistoryKDatasUtils
from utils import global_util, tool
 
 
class DataLoader:
    """
    数据加载器类,用于集中管理策略变量所需的各类数据加载逻辑
    """
 
    def __init__(self, now_day, cache_path="D:/datas"):
        """
        初始化数据加载器
        :param now_day: 当前日期,格式为"2025-01-01"
        """
        self.now_day = now_day
        self.cache_path = cache_path
        self.jueJinLocalApi = JueJinLocalApi("41c4f5da-2591-11f0-a9c9-f4b5203f67bf",
                                             "018db265fa34e241dd6198b7ca507ee0a82ad029")
        self.trade_days = self.load_trade_days()
 
    def load_kline_data(self):
        """
        加载日K线数据
        :return: 日K线数据
        """
        dir_path = os.path.join(self.cache_path, "k_bars")
        day = self.trade_days[0]
        dirs = os.listdir(dir_path)
        k_bar_code_data_dict = {}
        for d in dirs:
            if d.find(day) < 0:
                continue
            code = d.split("_")[-1][:6]
            fpath = os.path.join(dir_path, d)
            with open(fpath, mode='r', encoding='utf-8') as f:
                lines = f.readlines()
                line = lines[0]
                k_bar_code_data_dict[code] = eval(line)
        return k_bar_code_data_dict
 
    def load_kline_data_by_day_and_code(self, day, code):
        path_str = os.path.join(self.cache_path, "k_bars", f"{day}_{code}.txt")
        if not os.path.exists(path_str):
            return None
        with open(path_str, mode='r', encoding='utf-8') as f:
            lines = f.readlines()
            line = lines[0]
            return eval(line)
        return None
 
    def load_minute_data(self):
        """
        加载分钟K线数据
        :return: 分钟K线数据字典
        """
        dir_path = os.path.join(self.cache_path, "bar_60s")
        day = self.trade_days[0]
        dirs = os.listdir(dir_path)
        k_bar_code_data_dict = {}
        for d in dirs:
            if d.find(day) < 0:
                continue
            code = d.split("_")[-1][:6]
            sub_dir_path = os.path.join(dir_path, d)
            sub_dirs = os.listdir(sub_dir_path)
            date_datas = {}
            for sub_dir in sub_dirs:
                fpath = os.path.join(sub_dir_path, sub_dir)
                date = sub_dir[:10]
                with open(fpath, mode='r', encoding='utf-8') as f:
                    lines = f.readlines()
                    line = lines[0]
                    date_datas[date] = eval(line)
            k_bar_code_data_dict[code] = date_datas
        return k_bar_code_data_dict
 
    def load_tick_data(self):
        """
        加载当日的tick数据
        :return:tick数据字典
        """
        code_ticks_dict = {}
        tick_dir_path = os.path.join(self.cache_path, "ticks")
        if os.path.exists(tick_dir_path):
            fs = os.listdir(tick_dir_path)
            for f in fs:
                if f.find(self.now_day) < 0:
                    continue
                code = f.split("_")[1][:6]
                tick_path = os.path.join(tick_dir_path, f)
                with open(tick_path, mode='r') as f:
                    lines = f.readlines()
                    line = lines[0]
                    line = line.replace("datetime.datetime(", "\"datetime.datetime(").replace("('PRC'))", "('PRC'))\"")
                    line = line.replace("'", "\"").replace("\"PRC\"", "'PRC'")
                    ticks = json.loads(line)
                    for t in ticks:
                        if t["created_at"].find("datetime.datetime") >= 0:
                            created_at_line = t["created_at"].replace("datetime.datetime(", "")
                            sts = created_at_line.split(",")
                            year, month, day, hour, minute, second = sts[0].strip(), sts[1].strip(), sts[2].strip(), \
                                                                     sts[
                                                                         3].strip(), \
                                                                     sts[4].strip(), (
                                                                         sts[5].strip() if len(sts) >= 7 else 0)
                            dt = datetime.datetime(int(year), int(month), int(day), int(hour), int(minute), int(second))
                            t["created_at"] = dt.strftime("%Y-%m-%d %H:%M:%S")
                    # 整理为分钟K线
                    code_ticks_dict[code] = ticks
        return code_ticks_dict
 
    def load_limit_up_data(self):
        """
        加载涨停数据
        :return: 涨停数据记录
        """
        mysql = mysql_data_delegate.Mysqldb()
        results = mysql.select_all(
            f"select _code, _day, _hot_block_name from kpl_limit_up_record where _day>='{self.trade_days[-1]}' and _day<='{self.trade_days[0]}' and _open=0")
        return results
 
    def load_trade_days(self):
        """
        加载交易日列表,now_day前120个交易日
        :return: 交易日列表
        """
        # 将now_day转为datetime类型
        current_date = datetime.datetime.strptime(self.now_day, '%Y-%m-%d').date()
        pre_date = current_date - datetime.timedelta(days=1)
        one_year_ago = (pre_date - datetime.timedelta(days=365)).strftime('%Y-%m-%d')
        pre_date = pre_date.strftime('%Y-%m-%d')
 
        trade_days = self.jueJinLocalApi.get_trading_dates(one_year_ago, pre_date)
        trade_days.sort(reverse=True)
        trade_days = trade_days[:120]
        return trade_days
 
    def load_next_trade_day(self):
        """
        加载交易日列表,now_day前120个交易日
        :return: 交易日列表
        """
        next_trade_day = self.jueJinLocalApi.get_next_trading_date(self.now_day)
        return next_trade_day
 
    def load_target_codes(self):
        """
        获取特殊的代码,需要订阅300w以上的大单
        @return: 代码集合, 收盘价字典:{"code":收盘价}
        """
        try:
            global_data_loader.load_zyltgb_volume_from_db()
            pre_close_price_dict = {}
            zylt_volume_map = global_util.zylt_volume_map
            codes = set()
            last_trade_day = self.trade_days[0]
            for code in zylt_volume_map:
                volume = zylt_volume_map.get(code)
                # 今日涨停价要突破昨日最高价
                k_bars = HistoryKDataManager().get_history_bars(code, last_trade_day)
                if k_bars and 30e8 <= k_bars[0]["close"] * volume * tool.get_limit_up_rate(code) <= 300e8:
                    # 自由流通市值在30亿-300亿以上
                    limit_up_price = round(tool.get_limit_up_rate(code) * k_bars[0]["close"], 2)
                    max_price_info = max(k_bars[:1], key=lambda x: x["high"])
                    if limit_up_price > max_price_info["high"]:
                        # 今日涨停价要突破昨日最高价
                        codes.add(code)
                        pre_close_price_dict[code] = k_bars[0]["close"]
            return codes, pre_close_price_dict
        except Exception as e:
            return set(), None
 
 
class StrategyVariableFactory:
    @staticmethod
    def create_from_history_data(kline_data_1d, kline_data_60s_dict, limit_up_data_records,
                                 trade_days) -> StockVariables:
        """
        根据历史数据创建StockVariables对象
        :param kline_data_1d: 日K线数据
        :param kline_data_60s_dict:分钟k线字典:{"2025-01-01":{Bar格式}}
        :param limit_up_data_records: 代码的历史涨停数据:[(代码,日期,涨停原因)]
        :param trade_days: 交易日列表,从大到小倒序排列
        :return: StockVariables实例
        """
        instance = StockVariables()
        # 设置K线相关属性
        instance.昨日成交量 = KTickLineAnalyzer.get_yesterday_volume(kline_data_1d)
        instance.昨日收盘价 = KTickLineAnalyzer.get_yesterday_close(kline_data_1d)
        instance.昨日最高价 = KTickLineAnalyzer.get_yesterday_high(kline_data_1d)
        instance.昨日成交额 = KTickLineAnalyzer.get_yesterday_amount(kline_data_1d)
        instance.昨日非涨停 = not KTickLineAnalyzer.is_yesterday_limit_up(kline_data_1d)
        instance.昨日非炸板 = not KTickLineAnalyzer.is_yesterday_exploded(kline_data_1d)
        instance.昨日非跌停 = not KTickLineAnalyzer.is_yesterday_limit_down(kline_data_1d)
        day_counts = [5, 10, 30, 60, 120]
        for day in day_counts:
            instance.__setattr__(f"日最高价_{day}", KTickLineAnalyzer.get_recent_days_high(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"日最高量_{day}", KTickLineAnalyzer.get_recent_days_max_volume(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"涨停数_{day}", KTickLineAnalyzer.get_recent_limit_up_count(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"炸板数_{day}", KTickLineAnalyzer.get_recent_exploded_count(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"跌停数_{day}", KTickLineAnalyzer.get_recent_limit_down_count(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"日首板溢价率_{day}", KTickLineAnalyzer.get_first_limit_up_avg_premium(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"日首板炸板溢价率_{day}",
                                 KTickLineAnalyzer.get_first_exploded_avg_premium(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"日首板个数_{day}", KTickLineAnalyzer.get_first_limit_up_days(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"日二板个数_{day}", KTickLineAnalyzer.get_second_limit_up_days(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"日三板个数_{day}", KTickLineAnalyzer.get_third_limit_up_days(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"日大等于四板个数_{day}",
                                 KTickLineAnalyzer.get_fourth_or_more_limit_up_days(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"日首跌停个数_{day}", KTickLineAnalyzer.get_first_limit_down_days(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"日2次跌停个数_{day}", KTickLineAnalyzer.get_second_limit_down_days(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"日3次跌停个数_{day}", KTickLineAnalyzer.get_third_limit_down_days(kline_data_1d, day))
        for day in day_counts:
            instance.__setattr__(f"日大等于4次跌停个数_{day}",
                                 KTickLineAnalyzer.get_fourth_or_more_limit_down_days(kline_data_1d, day))
 
        for day in day_counts:
            days = trade_days[:day]
            instance.__setattr__(f"日个股最正的原因_{day}",
                                 KPLLimitUpDataAnalyzer.get_most_common_reasons(limit_up_data_records, min_day=days[-1],
                                                                                max_day=days[0]))
        if kline_data_60s_dict:
            for day in day_counts:
                # 获取日K最高量的信息
                volume, k_data = KTickLineAnalyzer.get_recent_days_max_volume(kline_data_1d, day)
                d = k_data["bob"][:10]
                kline_data_60s = kline_data_60s_dict.get(d)
                fdata = K60SLineAnalyzer.get_close_price_of_max_volume(kline_data_60s)
                instance.__setattr__(f"日高量分时最高量价_{day}", fdata)
            kline_data_60s = kline_data_60s_dict.get(trade_days[0])
            fdata = K60SLineAnalyzer.get_close_price_of_max_volume(kline_data_60s)
            instance.__setattr__(f"昨日分时最高量价", fdata)
        return instance
 
 
if __name__ == "__main__":
    # instance = StockVariables()
    # day = 5
    # instance.__setattr__(f"日最高价_{day}", 12.00)
    # print(instance.日最高价_5)
    DataLoader("2025-05-06").load_tick_data()