Administrator
2025-05-26 b51b2ae184fad5aaf37a78903987e064f192d430
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""
大单成交数据解析器
"""
import os
import re
from multiprocessing import Pool
 
import pandas as pd
 
from utils import tool
 
 
class BigOrderDealParser:
 
    @classmethod
    def str_to_float(cls, s):
        try:
            # 移除单位并转换
            return round(float(s.split("@")[0]), 2)
        except:
            return float("nan")
 
    @classmethod
    def code_format(cls, s):
        try:
            code = "{0:0>6}".format(s)
            return code
        except:
            return ''
 
 
def __pre_process_transactions_detail(args):
    def first_last(group):
        """
            获取第一条数据与最后一条
            @param group:
            @return:
            """
        return pd.Series({
            'TotalAmount': group['TradeAmount'].sum(),
            'TotalVolume': group['TradeVolume'].sum(),
            'StartTime': group['TradeTime'].iloc[0],
            'StartPrice': group['TradePrice'].iloc[0],
            'EndTime': group['TradeTime'].iloc[-1],
            'EndPrice': group['TradePrice'].iloc[-1]
        })
 
    chunk_index, chunk_data = args[0]
    csv_path = args[1]
    df = chunk_data.copy()
    index = chunk_index + 1
    children_dir = csv_path.replace(".csv", "")
    if not os.path.exists(children_dir):
        os.makedirs(children_dir)
    child_path = os.path.join(children_dir, f"{index}.csv")
    if os.path.exists(child_path):
        return
    print(f"处理Transaction第{index}批次", os.getpid())
    df["TradePrice"] = df["TradePrice"].apply(BigOrderDealParser.str_to_float)
    df["SecurityID"] = df["SecurityID"].apply(BigOrderDealParser.code_format)
    df = df[df["SecurityID"].str.startswith(("30", "00", "60"), na=False)]
    # 计算成交金额
    df['TradeAmount'] = df['TradePrice'] * df['TradeVolume']
    df = df[df["TradeAmount"] > 0]
    # 判断是否为空
    # print(df.empty)
    # 按SecurityID和BuyNo分组
    grouped = df.groupby(['SecurityID', 'BuyNo'])
    # 应用聚合函数
    chunk_result = grouped.apply(first_last)
    if not df.empty:
        chunk_result = chunk_result.reset_index()
    chunk_result.to_csv(child_path, index=False)
 
 
def pre_process_transactions(csv_path, process_count=4):
    chunk_size = 200000
    # 创建DataFrame
    chunks = pd.read_csv(csv_path, chunksize=chunk_size)
    indexed_data = list(enumerate(chunks))
    args = [(x, csv_path) for x in indexed_data]
    # 新写法
    with Pool(processes=process_count) as pool:
        pool.map(__pre_process_transactions_detail, args)
 
 
def __pre_process_ngtsticks(args):
    def first_last(group):
        return pd.Series({
            'TotalAmount': group['TradeMoney'].sum(),
            'TotalVolume': group['Volume'].sum(),
            'StartTime': group['TickTime'].iloc[0],
            'StartPrice': group['Price'].iloc[0],
            'EndTime': group['TickTime'].iloc[-1],
            'EndPrice': group['Price'].iloc[-1]
        })
 
    chunk_index, chunk_data = args[0]
    csv_path = args[1]
 
    df = chunk_data.copy()
    index = chunk_index + 1
    children_dir = csv_path.replace(".csv", "")
    if not os.path.exists(children_dir):
        os.makedirs(children_dir)
    child_path = os.path.join(children_dir, f"{index}.csv")
    if os.path.exists(child_path):
        return
    print(f"处理NGTSTick第{index}批次")
    df = df[df["TickType"] == 'T']
    df["Price"] = df["Price"].apply(BigOrderDealParser.str_to_float)
    df["SecurityID"] = df["SecurityID"].apply(BigOrderDealParser.code_format)
    df = df[df["SecurityID"].str.startswith(("30", "00", "60"), na=False)]
    # 计算成交金额
    df['TradeMoney'] = df["TradeMoney"].apply(BigOrderDealParser.str_to_float)
 
    # 按SecurityID和BuyNo分组
    grouped = df.groupby(['SecurityID', 'BuyNo'])
    # 应用聚合函数
    chunk_result = grouped.apply(first_last)
    if not df.empty:
        chunk_result = chunk_result.reset_index()
    chunk_result.to_csv(child_path, index=False)
 
 
def pre_process_ngtsticks(csv_path, process_count=4):
    chunk_size = 200000
    # 创建DataFrame
    chunks = pd.read_csv(csv_path, chunksize=chunk_size)
    indexed_data = list(enumerate(chunks))
    args = [(x, csv_path) for x in indexed_data]
    # 新写法
    with Pool(processes=process_count) as pool:
        pool.map(__pre_process_ngtsticks, args)
 
 
def __concat_pre_datas(dir_path):
    """
    拼接数据
    @param dir_path:
    @return:
    """
    combined_path = os.path.join(dir_path, 'combined.csv')
    if os.path.exists(combined_path):
        print("合并的目标文件已存在")
        return
    file_list = os.listdir(dir_path)
    file_list.sort(key=lambda x: int(re.findall(r'\d+', x)[0]))
    df_list = []
    for file in file_list:
        df = pd.read_csv(os.path.join(dir_path, file))
        if df.empty:
            continue
        df["SecurityID"] = df["SecurityID"].apply(BigOrderDealParser.code_format)
        df_list.append(df)
    print("准备合并的文件数量:", len(df_list))
 
    combined_df = pd.concat(df_list, ignore_index=True)
 
    print("合并完成,准备写入文件!")
    # 保存结果
    combined_df.to_csv(combined_path, index=False)
    print("写入文件完成!")
 
 
def concat_pre_transactions(dir_path):
    __concat_pre_datas(dir_path)
 
def concat_pre_ngtsticks(dir_path):
    __concat_pre_datas(dir_path)
 
if __name__ == "__main__":
    pre_process_transactions("E:/测试数据/Transaction_Test.csv")
    # pre_process_ngtsticks("E:/测试数据/NGTSTick_Test.csv")
    concat_pre_transactions("E:/测试数据/Transaction_Test")