Administrator
2025-06-05 48e24816c88f722e40b43187fa63a8334196f5ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
"""
L2数据解析器
"""
import csv
import os
import sys
import time
from multiprocessing import Pool
 
import pandas as pd
 
from data_parser import transaction_big_order_parser
from db import mysql_data_delegate as mysql_data
from huaxin_client.l2_client_test import L2TransactionDataManager
from log_module import log_export
from utils import tool
 
 
def __get_target_codes(day):
    special_codes_dict = log_export.load_special_codes(day)
    fcodes = set()
    for plate in special_codes_dict:
        codes = special_codes_dict[plate]
        fcodes |= codes
    return fcodes
 
 
def parse_order_detail(day, code):
    target_codes = __get_target_codes(day)
    base_path = f"/home/userzjj/ftp/{day}"
    with open(f"{base_path}/OrderDetail.csv", 'r', encoding='utf-8') as file:
        csv_reader = csv.reader(file)
        # 获取表头:: ['ExchangeID', 'SecurityID', 'OrderTime', 'Price', 'Volume', 'Side', 'OrderType', 'MainSeq', 'SubSeq', 'Info1', 'Info2', 'Info3', 'OrderNO', 'OrderStatus', 'BizIndex', 'LocalTimeStamp']
        headers = next(csv_reader)
        print("表头:", headers)
        # 遍历数据行
        _path = f"{base_path}/OrderDetail_filter.csv"
        with open(_path, 'w', newline='', encoding='utf-8') as csvfile:
            # 创建一个 CSV 写入器对象
            writer = csv.writer(csvfile)
            # 逐行写入数据
            for row in csv_reader:
                if row[1] not in target_codes:
                    continue
                if code and code != row[1]:
                    continue
                # 将文件写入到文本
                writer.writerow(row)
 
 
def parse_transaction(day, save=True, parse_all=False):
    target_codes = __get_target_codes(day)
    base_path = f"/home/userzjj/ftp/{day}"
    fdatas = []
    df = pd.read_csv(f"{base_path}/Transaction.csv")
    category_revenue = df.groupby('BuyNo')['TradeVolume'].sum()
 
    with open(f"{base_path}/Transaction.csv", 'r', encoding='utf-8') as file:
        csv_reader = csv.reader(file)
        total_lines = csv_reader.line_num
        print("总行数:", total_lines)
        # 获取表头:: [ExchangeID,SecurityID,TradeTime,TradePrice,TradeVolume,ExecType,MainSeq,SubSeq,BuyNo,SellNo,Info1,Info2,Info3,TradeBSFlag,BizIndex,LocalTimeStamp]
        headers = next(csv_reader)
        print("表头:", headers)
        # 遍历数据行
        _path = f"{base_path}/Transaction_filter.csv"
        percent = 0
        with open(_path, 'w', newline='', encoding='utf-8') as csvfile:
            # 创建一个 CSV 写入器对象
            writer = csv.writer(csvfile)
            # 逐行写入数据
            count = 0
            for row in csv_reader:
                count += 1
                p = count * 100 // total_lines
                if p != percent:
                    percent = p
                    print(f"**进度:{percent}%")
                if row[1] not in target_codes and not parse_all:
                    continue
                # 将文件写入到文本
                if save:
                    writer.writerow(row)
                fdatas.append(row)
    return fdatas
 
 
def parse_ngtstick(day, save=True):
    target_codes = __get_target_codes(day)
    base_path = f"/home/userzjj/ftp/{day}"
    fdatas = []
    with open(f"{base_path}/NGTSTick.csv", 'r', encoding='utf-8') as file:
        csv_reader = csv.reader(file)
        # 获取表头:: [ExchangeID,SecurityID,MainSeq,SubSeq,TickTime,TickType,BuyNo,SellNo,Price,Volume,TradeMoney,Side,TradeBSFlag,MDSecurityStat,Info1,Info2,Info3,LocalTimeStamp]
        headers = next(csv_reader)
        print("表头:", headers)
        # 遍历数据行
        _path = f"{base_path}/NGTSTick_filter.csv"
        with open(_path, 'w', newline='', encoding='utf-8') as csvfile:
            # 创建一个 CSV 写入器对象
            writer = csv.writer(csvfile)
            # 逐行写入数据
            for row in csv_reader:
                if row[1] not in target_codes:
                    continue
                if save:
                    # 将文件写入到文本
                    writer.writerow(row)
                fdatas.append(row)
    return fdatas
 
 
def parse_deal_big_orders(day, big_order_path, target_code=None):
    """
    提取所有成交大单
    @param day:
    @return:
    """
    print("*******开始处理成交大单数据", day, big_order_path, target_code)
    l2_data_manager_dict = {}
    # 解析数据
    __start_time = time.time()
    transaction_data = parse_transaction(day, parse_all=True)
    print("*******Transaction 读取完毕", len(transaction_data), "耗时", int(time.time() - __start_time))
    __start_time = time.time()
    ngtstick_data = parse_ngtstick(day)
    print("*******NGTSTick 读取完毕", len(ngtstick_data), "耗时", int(time.time() - __start_time))
    __start_time = time.time()
    big_order_list = []
    for index, row in enumerate(transaction_data):
        code = row[1]
        if target_code and code != target_code:
            continue
        item = {"SecurityID": row[1], "TradePrice": round(float(row[3].split("@")[0]), 2),
                "TradeVolume": int(row[4]),
                "OrderTime": int(row[2]), "MainSeq": int(row[6]),
                "SubSeq": int(row[7]), "BuyNo": int(row[8]),
                "SellNo": int(row[9]),
                "ExecType": int(row[5])}
        if item["TradePrice"] <= 0:
            continue
        if code not in l2_data_manager_dict:
            l2_data_manager_dict[code] = L2TransactionDataManager(code, True)
        l2_data_manager_dict[code].add_transaction_data(item, big_order_money_threshold=100e4)
        if index % 100 == 0:
            # 读取队列中的数据
            l2_data_manager: L2TransactionDataManager = l2_data_manager_dict[code]
            while not l2_data_manager.big_accurate_buy_order_queue.empty():
                data = l2_data_manager.big_accurate_buy_order_queue.get()
                big_order_list.append((code, 0, data))
 
            while not l2_data_manager.big_accurate_sell_order_queue.empty():
                data = l2_data_manager.big_accurate_sell_order_queue.get()
                big_order_list.append((code, 1, data))
    print("********Transaction 处理完毕", len(big_order_list), "耗时", int(time.time() - __start_time))
    __start_time = time.time()
 
    for index, row in enumerate(ngtstick_data):
        code = row[1]
        if target_code and code != target_code:
            continue
        if row[5].strip() != 'T':
            # 过滤非成交数据
            continue
 
        item = {"SecurityID": row[1], "TradePrice": round(float(row[8].split("@")[0]), 2),
                "TradeVolume": int(row[9]),
                "OrderTime": row[4], "MainSeq": row[2],
                "SubSeq": row[3], "BuyNo": row[6],
                "SellNo": row[7],
                "ExecType": '1'}
        if item["TradePrice"] <= 0:
            continue
 
        if code not in l2_data_manager_dict:
            l2_data_manager_dict[item["SecurityID"]] = L2TransactionDataManager(code, True)
        l2_data_manager_dict[item["SecurityID"]].add_transaction_data(item)
        if index % 100 == 0:
            # 读取队列中的数据
            l2_data_manager: L2TransactionDataManager = l2_data_manager_dict[code]
            while not l2_data_manager.big_accurate_buy_order_queue.empty():
                data = l2_data_manager.big_accurate_buy_order_queue.get()
                big_order_list.append((code, 0, data))
 
            while not l2_data_manager.big_accurate_sell_order_queue.empty():
                data = l2_data_manager.big_accurate_sell_order_queue.get()
                big_order_list.append((code, 1, data))
    print("********NGTSTick 处理完毕", len(big_order_list), "耗时", int(time.time() - __start_time))
    __start_time = time.time()
    # 读取剩余的未读数据的代码
    for code in l2_data_manager_dict:
        l2_data_manager: L2TransactionDataManager = l2_data_manager_dict[code]
        while not l2_data_manager.big_accurate_buy_order_queue.empty():
            data = l2_data_manager.big_accurate_buy_order_queue.get()
            big_order_list.append((code, 0, data))
 
        while not l2_data_manager.big_accurate_sell_order_queue.empty():
            data = l2_data_manager.big_accurate_sell_order_queue.get()
            big_order_list.append((code, 1, data))
    print("********开始写入本地文件:", len(big_order_list), "耗时", int(time.time() - __start_time))
    __start_time = time.time()
    # 开始写入本地文件
    with open(big_order_path, mode='w', encoding='utf-8') as f:
        for order in big_order_list:
            f.write(f"{order}\n")
    print("*******写入本地文件结束:", "耗时", int(time.time() - __start_time))
    __start_time = time.time()
 
 
def parse_market_data(day):
    target_codes = __get_target_codes(day)
    base_path = f"/home/userzjj/ftp/{day}"
    with open(f"{base_path}/MarketData.csv", 'r', encoding='utf-8') as file:
        csv_reader = csv.reader(file)
        # 获取表头:: [SecurityID,ExchangeID,DataTimeStamp,PreClosePrice,OpenPrice,NumTrades,TotalVolumeTrade,TotalValueTrade,TotalBidVolume,AvgBidPrice,TotalAskVolume,AvgAskPrice,HighestPrice,LowestPrice,LastPrice,BidPrice1,BidVolume1,AskPrice1,AskVolume1....]
        headers = next(csv_reader)
        print("表头:", headers)
        # 遍历数据行
        _path = f"{base_path}/MarketData_filter.csv"
        with open(_path, 'w', newline='', encoding='utf-8') as csvfile:
            # 创建一个 CSV 写入器对象
            writer = csv.writer(csvfile)
            # 逐行写入数据
            for row in csv_reader:
                if row[0] not in target_codes:
                    continue
                # 将文件写入到文本
                writer.writerow(row)
 
 
def test1(args):
    index, df = args
    print(index)
 
 
def pre_process_transactions(csv_path="E:/测试数据/Transaction_Test.csv"):
    def str_to_float(s):
        try:
            # 移除单位并转换
            return round(float(s.split("@")[0]), 2)
        except:
            return float("nan")
 
    def code_format(s):
        try:
            code = "{0:0>6}".format(s)
            return code
        except:
            return ''
 
    # [ExchangeID, SecurityID, TradeTime, TradePrice, TradeVolume, ExecType, MainSeq, SubSeq, BuyNo, SellNo, Info1, Info2,
    #  Info3, TradeBSFlag, BizIndex, LocalTimeStamp]
    # transaction_data = {
    #     "SecurityID": ['300920', '300920', '300920', '300920'],
    #     "TradeTime": [91500040, 91500041, 91500042, 92000040],
    #     "TradePrice": [15.0, 16.2, 15.2, 16.3],
    #     "TradeVolume": [100, 100, 200, 300],
    #     "BuyNo": [0, 1, 1, 1]
    # }
    # 定义聚合函数
    def first_last(group):
        return pd.Series({
            'TotalAmount': group['TradeAmount'].sum(),
            'TotalVolume': group['TradeVolume'].sum(),
            'StartTime': group['TradeTime'].iloc[0],
            'StartPrice': group['TradePrice'].iloc[0],
            'EndTime': group['TradeTime'].iloc[-1],
            'EndPrice': group['TradePrice'].iloc[-1]
        })
 
    dtype = {
        'SecurityID': 'category',  # 低基数分类数据
    }
    chunk_size = 10000
    # 创建DataFrame
    chunks = pd.read_csv(csv_path, chunksize=chunk_size)
    indexed_data = list(enumerate(chunks))
    # 新写法
    with Pool(processes=4) as pool:
        pool.map(test1, indexed_data)
 
    result_list = []
    for chunk_index, chunk in enumerate(chunks):
        df = chunk.copy()
        index = chunk_index + 1
        child_path = csv_path.replace(".csv", f"_{index}.csv")
        if os.path.exists(child_path):
            continue
        print(f"处理第{index}批次")
        df["TradePrice"] = df["TradePrice"].apply(str_to_float)
        df["SecurityID"] = df["SecurityID"].apply(code_format)
        df = df[df["SecurityID"].str.startswith(("30", "00", "60"), na=False)]
        # 计算成交金额
        df['TradeAmount'] = df['TradePrice'] * df['TradeVolume']
 
        # 按SecurityID和BuyNo分组
        grouped = df.groupby(['SecurityID', 'BuyNo'])
 
        # 应用聚合函数
        chunk_result = grouped.apply(first_last).reset_index()
 
        chunk_result.to_csv(child_path, index=False)
    print(f"处理完毕,总共{index}批")
 
 
def pre_process_ngtstick(csv_path="E:/测试数据/NGTSTick_Test.csv"):
    def str_to_float(s):
        try:
            # 移除单位并转换
            return round(float(s.split("@")[0]), 2)
        except:
            return float("nan")
 
    def code_format(s):
        try:
            code = "{0:0>6}".format(s)
            return code
        except:
            return ''
 
    # 定义聚合函数
    def first_last(group):
        return pd.Series({
            'TotalAmount': group['TradeMoney'].sum(),
            'TotalVolume': group['Volume'].sum(),
            'StartTime': group['TickTime'].iloc[0],
            'StartPrice': group['Price'].iloc[0],
            'EndTime': group['TickTime'].iloc[-1],
            'EndPrice': group['Price'].iloc[-1]
        })
 
    # [ExchangeID,SecurityID,MainSeq,SubSeq,TickTime,TickType,BuyNo,SellNo,Price,Volume,TradeMoney,Side,TradeBSFlag,MDSecurityStat,Info1,Info2,Info3,LocalTimeStamp]
 
    chunk_size = 10000
    # 创建DataFrame
    chunks = pd.read_csv(csv_path, chunksize=chunk_size)
    result_list = []
    index = 0
    for df in chunks:
        index += 1
        child_path = csv_path.replace(".csv", f"_{index}.csv")
        if os.path.exists(child_path):
            continue
        print(f"处理第{index}批次")
        df = df[df["TickType"] == 'T']
        df["Price"] = df["Price"].apply(str_to_float)
        df["SecurityID"] = df["SecurityID"].apply(code_format)
 
        df = df[df["SecurityID"].str.startswith(("30", "00", "60"), na=False)]
 
        # 计算成交金额
        df['TradeMoney'] = df["TradeMoney"].apply(str_to_float)
        # 按SecurityID和BuyNo分组
        grouped = df.groupby(['SecurityID', 'BuyNo'])
        # 应用聚合函数
        chunk_result = grouped.apply(first_last).reset_index()
        chunk_result.to_csv(child_path, index=False)
    print(f"处理完毕,总共{index}批")
 
 
if __name__ == '__main__1':
    # df = pd.read_csv(f"E:/测试数据/Transaction_Test.csv")
    pre_process_transactions()
 
# 命令模式  /home/userzjj/app/gp-server/l2_data_parser Transaction  2025-05-08
# 解析大单: /home/userzjj/app/gp-server/l2_data_parser ExtractDealBigOrder 2025-05-09 /home/userzjj/最终成交数据20250509.txt 000555
if __name__ == '__main__':
    if len(sys.argv) > 1:
        params = sys.argv[1:]
        print("接收的参数", params)
        _type = params[0].strip()
        day = params[1].strip()
        if len(params) > 2:
            code = params[2].strip()
        else:
            code = None
        if _type == 'OrderDetail':
            parse_order_detail(day, code)
        elif _type == 'Transaction':
            parse_transaction(day)
        elif _type == 'NGTSTick':
            parse_ngtstick(day)
        elif _type == 'MarketData':
            parse_market_data(day)
        elif _type == 'Transaction_New':
            if len(params) > 2:
                process_count = int(params[2].strip())
            else:
                process_count = 4
 
            transaction_big_order_parser.pre_process_transactions(f"/home/userzjj/ftp/{day}/Transaction.csv",
                                                                  process_count=process_count)
            transaction_big_order_parser.concat_pre_transactions(f"/home/userzjj/ftp/{day}/Transaction")
        elif _type == 'NGTSTick_New':
            if len(params) > 2:
                process_count = int(params[2].strip())
            else:
                process_count = 4
            transaction_big_order_parser.pre_process_ngtsticks(f"/home/userzjj/ftp/{day}/NGTSTick.csv",
                                                               process_count=process_count)
            transaction_big_order_parser.concat_pre_ngtsticks(f"/home/userzjj/ftp/{day}/NGTSTick")
        elif _type == 'Transaction_Concat':
            transaction_big_order_parser.concat_pre_transactions(f"/home/userzjj/ftp/{day}/Transaction")
        elif _type == 'NGTSTick_Concat':
            transaction_big_order_parser.concat_pre_ngtsticks(f"/home/userzjj/ftp/{day}/NGTSTick")
        elif _type == 'ExtractDealBigOrder':
            # 命令模式  /home/userzjj/app/gp-server/l2_data_parser ExtractDealBigOrder 2025-05-09
            if len(params) > 2:
                process_count = int(params[2].strip())
            else:
                process_count = 10
            transaction_big_order_parser.extract_big_order_of_all(f"/home/userzjj/ftp/{day}/NGTSTick",
                                                                  process_count=process_count)
            transaction_big_order_parser.extract_big_order_of_all(f"/home/userzjj/ftp/{day}/Transaction",
                                                                  process_count=process_count)