developer
2023-05-20 e12c7b4c22df631ebdcd16b2f98fbef8f738f92f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#import "GPUImageSingleComponentGaussianBlurFilter.h"
 
@implementation GPUImageSingleComponentGaussianBlurFilter
 
+ (NSString *)vertexShaderForOptimizedBlurOfRadius:(NSUInteger)blurRadius sigma:(CGFloat)sigma;
{
    if (blurRadius < 1)
    {
        return kGPUImageVertexShaderString;
    }
 
    // First, generate the normal Gaussian weights for a given sigma
    GLfloat *standardGaussianWeights = calloc(blurRadius + 1, sizeof(GLfloat));
    GLfloat sumOfWeights = 0.0;
    for (NSUInteger currentGaussianWeightIndex = 0; currentGaussianWeightIndex < blurRadius + 1; currentGaussianWeightIndex++)
    {
        standardGaussianWeights[currentGaussianWeightIndex] = (1.0 / sqrt(2.0 * M_PI * pow(sigma, 2.0))) * exp(-pow(currentGaussianWeightIndex, 2.0) / (2.0 * pow(sigma, 2.0)));
        
        if (currentGaussianWeightIndex == 0)
        {
            sumOfWeights += standardGaussianWeights[currentGaussianWeightIndex];
        }
        else
        {
            sumOfWeights += 2.0 * standardGaussianWeights[currentGaussianWeightIndex];
        }
    }
    
    // Next, normalize these weights to prevent the clipping of the Gaussian curve at the end of the discrete samples from reducing luminance
    for (NSUInteger currentGaussianWeightIndex = 0; currentGaussianWeightIndex < blurRadius + 1; currentGaussianWeightIndex++)
    {
        standardGaussianWeights[currentGaussianWeightIndex] = standardGaussianWeights[currentGaussianWeightIndex] / sumOfWeights;
    }
    
    // From these weights we calculate the offsets to read interpolated values from
    NSUInteger numberOfOptimizedOffsets = MIN(blurRadius / 2 + (blurRadius % 2), 7);
    GLfloat *optimizedGaussianOffsets = calloc(numberOfOptimizedOffsets, sizeof(GLfloat));
    
    for (NSUInteger currentOptimizedOffset = 0; currentOptimizedOffset < numberOfOptimizedOffsets; currentOptimizedOffset++)
    {
        GLfloat firstWeight = standardGaussianWeights[currentOptimizedOffset*2 + 1];
        GLfloat secondWeight = standardGaussianWeights[currentOptimizedOffset*2 + 2];
        
        GLfloat optimizedWeight = firstWeight + secondWeight;
        
        optimizedGaussianOffsets[currentOptimizedOffset] = (firstWeight * (currentOptimizedOffset*2 + 1) + secondWeight * (currentOptimizedOffset*2 + 2)) / optimizedWeight;
    }
    
    NSMutableString *shaderString = [[NSMutableString alloc] init];
    // Header
    [shaderString appendFormat:@"\
     attribute vec4 position;\n\
     attribute vec4 inputTextureCoordinate;\n\
     \n\
     uniform float texelWidthOffset;\n\
     uniform float texelHeightOffset;\n\
     \n\
     varying vec2 blurCoordinates[%lu];\n\
     \n\
     void main()\n\
     {\n\
     gl_Position = position;\n\
     \n\
     vec2 singleStepOffset = vec2(texelWidthOffset, texelHeightOffset);\n", (unsigned long)(1 + (numberOfOptimizedOffsets * 2))];
    
    // Inner offset loop
    [shaderString appendString:@"blurCoordinates[0] = inputTextureCoordinate.xy;\n"];
    for (NSUInteger currentOptimizedOffset = 0; currentOptimizedOffset < numberOfOptimizedOffsets; currentOptimizedOffset++)
    {
        [shaderString appendFormat:@"\
         blurCoordinates[%lu] = inputTextureCoordinate.xy + singleStepOffset * %f;\n\
         blurCoordinates[%lu] = inputTextureCoordinate.xy - singleStepOffset * %f;\n", (unsigned long)((currentOptimizedOffset * 2) + 1), optimizedGaussianOffsets[currentOptimizedOffset], (unsigned long)((currentOptimizedOffset * 2) + 2), optimizedGaussianOffsets[currentOptimizedOffset]];
    }
    
    // Footer
    [shaderString appendString:@"}\n"];
    
    free(optimizedGaussianOffsets);
    free(standardGaussianWeights);
    return shaderString;
}
 
+ (NSString *)fragmentShaderForOptimizedBlurOfRadius:(NSUInteger)blurRadius sigma:(CGFloat)sigma;
{
    if (blurRadius < 1)
    {
        return kGPUImagePassthroughFragmentShaderString;
    }
 
    // First, generate the normal Gaussian weights for a given sigma
    GLfloat *standardGaussianWeights = calloc(blurRadius + 1, sizeof(GLfloat));
    GLfloat sumOfWeights = 0.0;
    for (NSUInteger currentGaussianWeightIndex = 0; currentGaussianWeightIndex < blurRadius + 1; currentGaussianWeightIndex++)
    {
        standardGaussianWeights[currentGaussianWeightIndex] = (1.0 / sqrt(2.0 * M_PI * pow(sigma, 2.0))) * exp(-pow(currentGaussianWeightIndex, 2.0) / (2.0 * pow(sigma, 2.0)));
        
        if (currentGaussianWeightIndex == 0)
        {
            sumOfWeights += standardGaussianWeights[currentGaussianWeightIndex];
        }
        else
        {
            sumOfWeights += 2.0 * standardGaussianWeights[currentGaussianWeightIndex];
        }
    }
    
    // Next, normalize these weights to prevent the clipping of the Gaussian curve at the end of the discrete samples from reducing luminance
    for (NSUInteger currentGaussianWeightIndex = 0; currentGaussianWeightIndex < blurRadius + 1; currentGaussianWeightIndex++)
    {
        standardGaussianWeights[currentGaussianWeightIndex] = standardGaussianWeights[currentGaussianWeightIndex] / sumOfWeights;
    }
    
    // From these weights we calculate the offsets to read interpolated values from
    NSUInteger numberOfOptimizedOffsets = MIN(blurRadius / 2 + (blurRadius % 2), 7);
    NSUInteger trueNumberOfOptimizedOffsets = blurRadius / 2 + (blurRadius % 2);
    
    NSMutableString *shaderString = [[NSMutableString alloc] init];
    
    // Header
#if TARGET_IPHONE_SIMULATOR || TARGET_OS_IPHONE
    [shaderString appendFormat:@"\
     uniform sampler2D inputImageTexture;\n\
     uniform highp float texelWidthOffset;\n\
     uniform highp float texelHeightOffset;\n\
     \n\
     varying highp vec2 blurCoordinates[%lu];\n\
     \n\
     void main()\n\
     {\n\
     lowp float sum = 0.0;\n", (unsigned long)(1 + (numberOfOptimizedOffsets * 2)) ];
#else
    [shaderString appendFormat:@"\
     uniform sampler2D inputImageTexture;\n\
     uniform float texelWidthOffset;\n\
     uniform float texelHeightOffset;\n\
     \n\
     varying vec2 blurCoordinates[%lu];\n\
     \n\
     void main()\n\
     {\n\
     float sum = 0.0;\n", 1 + (numberOfOptimizedOffsets * 2) ];
#endif
    
    // Inner texture loop
    [shaderString appendFormat:@"sum += texture2D(inputImageTexture, blurCoordinates[0]).r * %f;\n", standardGaussianWeights[0]];
    
    for (NSUInteger currentBlurCoordinateIndex = 0; currentBlurCoordinateIndex < numberOfOptimizedOffsets; currentBlurCoordinateIndex++)
    {
        GLfloat firstWeight = standardGaussianWeights[currentBlurCoordinateIndex * 2 + 1];
        GLfloat secondWeight = standardGaussianWeights[currentBlurCoordinateIndex * 2 + 2];
        GLfloat optimizedWeight = firstWeight + secondWeight;
        
        [shaderString appendFormat:@"sum += texture2D(inputImageTexture, blurCoordinates[%lu]).r * %f;\n", (unsigned long)((currentBlurCoordinateIndex * 2) + 1), optimizedWeight];
        [shaderString appendFormat:@"sum += texture2D(inputImageTexture, blurCoordinates[%lu]).r * %f;\n", (unsigned long)((currentBlurCoordinateIndex * 2) + 2), optimizedWeight];
    }
    
    // If the number of required samples exceeds the amount we can pass in via varyings, we have to do dependent texture reads in the fragment shader
    if (trueNumberOfOptimizedOffsets > numberOfOptimizedOffsets)
    {
#if TARGET_IPHONE_SIMULATOR || TARGET_OS_IPHONE
        [shaderString appendString:@"highp vec2 singleStepOffset = vec2(texelWidthOffset, texelHeightOffset);\n"];
#else
        [shaderString appendString:@"highp vec2 singleStepOffset = vec2(texelWidthOffset, texelHeightOffset);\n"];
#endif
        
        for (NSUInteger currentOverlowTextureRead = numberOfOptimizedOffsets; currentOverlowTextureRead < trueNumberOfOptimizedOffsets; currentOverlowTextureRead++)
        {
            GLfloat firstWeight = standardGaussianWeights[currentOverlowTextureRead * 2 + 1];
            GLfloat secondWeight = standardGaussianWeights[currentOverlowTextureRead * 2 + 2];
            
            GLfloat optimizedWeight = firstWeight + secondWeight;
            GLfloat optimizedOffset = (firstWeight * (currentOverlowTextureRead * 2 + 1) + secondWeight * (currentOverlowTextureRead * 2 + 2)) / optimizedWeight;
            
            [shaderString appendFormat:@"sum += texture2D(inputImageTexture, blurCoordinates[0] + singleStepOffset * %f).r * %f;\n", optimizedOffset, optimizedWeight];
            [shaderString appendFormat:@"sum += texture2D(inputImageTexture, blurCoordinates[0] - singleStepOffset * %f).r * %f;\n", optimizedOffset, optimizedWeight];
        }
    }
    
    // Footer
    [shaderString appendString:@"\
     gl_FragColor = vec4(sum, sum, sum, 1.0);\n\
     }\n"];
    
    free(standardGaussianWeights);
    return shaderString;
}
 
 
@end